1.现在时间为4点13古分,此时时针与分针成什么角度?( )
A.30度 B.45度 C.90度 D.120度
2.由1、2、3组成的没有重复数字的所有三位数之和为多少?( )
A.1222 B.1232 C.1322 D.1332
3.河道赛道长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?( )
A.48 B.50 C.52 D.54
4.三边长均为整数且最大边长为2009的三角形共有多少个?( )
A.1008016 B.1009020 C.1010025 D.2019045
5.某天体沿正圆形轨道绕地球一圈所需时间为29.53059天,转速约1公里/秒。假设该天体离地球的距离比现在远10万公里而转速不变,那么该天体绕地球一圈约需要多少天?( )
A.31 B.32 C.34 D.37
浙江公务员考试网<http://www.zjgwy.org/> 解析 题目或解析有误,我要纠错。
1. B。
2.D。因为1、2、3之和可被3整除,故而1、2、3所组成的没有重复数字的三位数都能被3整除,而这些数字相加之和也必能被3整除,只有D项能被3整除,为正确答案。根据排列组合原理,可知该没有重复数字的三位数共有6个,1、2、3三个数在个、十、百位上各出现两次,即(1+2+3)×2=12,也就是说这一数字当为12+120+1200=1332。
3. C。
4. C。根据三角形的构成原理,可知最大边长为2009时,另两边的和大于2009,差小于2009,则两边≤2009且≥1,则可知介于最长边与最短边之间的那条中边的长度必≥1005且≤2009。中边为1005时,另一边=1005,1种可能;中边为1006时,另一边=1004,1005,1006,共3种可能;中边为1007时,另一边=1003,1004,1005,1006,1007,共5种可能;……中边为2009时,另一边=1~2009,共2009种可能。因此三角形总和=1+3+5+…+2007+2009=1005(1+2009)/2=1010025种。所以答案为C项。
5. D。算式为[29.53059×24×60×60×1/π+100000×2]×π÷1÷60÷60÷24≈36.8天,所以答案为D项。