从历年考试情况来看,数量关系中“牛吃草”类题目是公务员考试中比较难的一类试题,国家公务员网老师解决“牛吃草”问题的经典公式是:即y=(n-x)*t,其中y代表原有存量(比如原有草量),N代表促使原有存量减少的外生可变数(比如牛数),x代表存量的自然增长速度(比如草长速度),T代表存量完全消失所耗用时间。需要提醒考生的是,此公式中默认了每头牛吃草的速度为1。运用此公式解决牛吃草问题的程序是列出方程组解题,具体过程不再详细叙述,接下来我们从牛吃草公式本身出发看看此公式带给我们的信息。
A 20 B 25 C 30 D 35 这道题目用差量法求解过程如下:设可供x头牛吃4天,10头牛吃20天和15头牛吃10天两种吃法的改变量为10×20—15×10,对应的草生长的改变量为20—10;我们还可以得到15头牛吃10天和x头牛吃4天两种吃法的改变量为15×10—4x,对应的草生长的改变量为10—4。由此我们可以列出如下的方程: (15*10-4x)/(10*20-15*10)=(10-4)/(20-10),解此方程可得x=30。 如果求天数,求解过程是一样的,下面我们来看另外一道试题:
A.2周 B.3周 C.4周 D.5周 解题过程如下所示:设需要x周吃光,则根据差量法列出如下方程: (21*12-23*9)/(23*9-33x)=(12-9)/(9-x),解此方程可得x=4。 以上两道试题在考试中比较常见,如果考生选择正确的思考方式,会在短时间内得出正确答案。近年来随着考试大纲的不断变化,命题者也在不断地推陈出新,所以牛吃草问题有了更多的变形,比如有的试题中牛吃草的速度会改变。尽管有变化但是考生依然可以用差量法来解决。请大家看下面这道国考真题:
A.2/5 B.2/7 C.1/3 D.1/4 这道试题的思考过程:设该市市民需要节约x比例的水才能实现政府制定的目标。则12万人20年和15万人15年两种吃水方式的差为12×20—15×15,对应的水库存水的改变量为20—15;15万人30年与15万人15年两种吃水方式的差为15×(1—x)×30-15×15,对应的水库存水的改变量为30—15,则可列出如下的比例式: (12*20-15*15)/[15*(1-x)*30-15*15]=(20-15)/(30-15),解此方程得x=2/5. 这道题如果改变的是草生长的速度,考生同样可以用差量法来解答。请看下面这道题:
A.15 B.16 C.18 D.19 解题过程:设至少应开售票窗口数为x。10个售票窗口5小时可使大厅内所有旅客买到票和开出12个售票窗口3小时可使大厅内所有旅客买到票两种方式票的差量为5×10—3×12,对应的旅客差量为5-3;10个售票窗口5小时可使大厅内所有旅客买到票和大厅入口处旅客速度增加为原速度1.5倍时开出x个售票窗口2小时可使大厅内所有旅客买到票这两种方式的差量为5×10—2x,对应的旅客差量为5-2×1.5,则可列出下列比例式: (5×10-3×12)/(5×10-2x)=(5-3)/(5-2×15),解得x=18. 除了上述两种变形的情况以外,还有另外一种变形的牛吃草试题,即改变原有草量。如果改变原有草量,从表面上此题看似乎不能用差量法解了,实际上经过简单的变换后依然可以用差量法解答,请大家看下面这道题:
A.50 B.46 C.38 D.35 根据题意我们可以得出40公亩牧场吃54天需要22×40÷33=80/3头牛,而40公亩牧场吃84天需要17×40÷28=170/7头牛,列出差量法的比例式如下: (170/7×84-80/3*54)/(80/3*54-24x)=(84-54)/(54-24),解得x=35。 因为本题中出现了不是整头牛的情况,所以考生不太容易理解。实际上,考生可把消耗量看作一个整体,而牛的数目并不重要,只要计算出消耗草的能力即可。 |
其它
公务员考试行测巧用差量法妙解数量关系题
http://www.zjgwy.org 2010-08-25 来源:浙江公务员网
免费学习资源(关注可获取最新开课信息)